89 research outputs found

    Preanalytical classical and alternative complement pathway activity loss

    Get PDF
    Introduction: Complement functional analyses provide insight into the integrity of the entire complement reaction cascade. These tests are suitable for investigating suspected complement deficiencies. Falsely reduced test outcomes may result from preanalytical instabilities of individual complement components. To generate rationale for this or potential alternative practices, this study aimed to extend the knowledge on the preanalytical stability of widely used tests to screen the complement system. We assessed the influence of time, temperature and EDTA on classical (CH50) and alternative pathway (AP50) functional assay test results. Materials and methods: We used nephelometric (C3d) and immunofixation (C3c) techniques to support the investigation of the preanalytical phase of basic complement system activity tests. Quantitative determination of classical and alternative pathway function was performed with a haemolytic activity assay and a C5b-9 neo-epitope ELISA-based assay respectively. Blood of five healthy volunteers was sampled and complement components allowed to degrade under different conditions. Results: CH50 and AP50 remain stable for approximately one week in serum samples incubated on ice. CH50 activity decreased almost twice as fast in EDTA plasma compared to serum at room temperature. AP50 activity contrastingly, decreased twice as slow in EDTA plasma compared to serum at room temperature. Conclusion: Serum on ice remains the preferred specimen for functional complement analyses. In the absence of serum transported on ice, serum kept at room temperature (not exceeding 24h) is suitable for classical and alternative pathway analyses. For alternative pathway analyses specifically, the C3-stabilising effect of EDTA allows for the extended use of EDTA plasma (not over 4 days). In these conditions, at least 85% of baseline complement activity remains

    Low power all-digital radio-over-fiber transmission for 28-GHz band using parallel electro-absorption modulators

    Get PDF
    We present a low-power all-digital radio-over-fiber transmitter for beyond 28-GHz using sigma-delta modulation, a 140mW NRZ driver and parallel electro-absorption modulators. 5.25Gb/s (2.625Gb/s) 64-QAM is transported over 10-km SSMF at 1560nm with 7.6% (5.2%) EVM

    Feasibility of using combined EMG and kinematic signals for prosthesis control : A simulation study using a virtual reality environment

    Get PDF
    Acknowledgment This study was partly supported by a UK Medical Research Council Centenary Award to Keele University.Peer reviewedPublisher PD

    A 160Gb/s (4x40) WDM O-band Tx subassembly using a 4-ch array of silicon rings co-packaged with a SiGe BiCMOS IC driver

    Get PDF
    We present a 400 (8×50) Gb/s-capable RM-based Si-photonic WDM O-band TxRx with 1.17nm channel spacing for high-speed optical interconnects and demonstrate successful 50Gb/s-NRZ TxRx operation achieving a ~4.5dB Tx extinction ratio under 2.15Vpp drive

    4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly

    Get PDF
    We demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4 x 50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit. Data reception has been experimentally validated at 50 Gb/s per lane, achieving an interpolated 10E-12 bit error rate (BER) for an input optical modulation amplitude (OMA) of -9.5 dBm and a power efficiency of 2.2 pJ/bit, yielding a total power efficiency of 4.2 pJ/bit for the transceiver, including heater tuning requirements. This electro-optic subassembly provides the highest aggregate data-rate among O-band RM-based silicon photonic transceiver implementations, highlighting its potential for next generation WDM Ethernet transceivers. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

    Electronic-photonic board as an integration platform for Tb/s multi-chip optical communication

    Get PDF
    Chip-on-board silicon photonics O-band wavelength-division multiplexing transceivers have been developed that will eventually enable high-throughput on-board optical communication for multi-socket on-board communication. This direct, any-to-any configuration yields low-latency, low-power optical communication among multiple compute nodes on the board. Silicon photonic transceiver chips are flip-chipped on a polymer waveguide containing an electro-optical circuit board using adiabatic coupling and then completed with driver and amplifier electronic chips. A transceiver assembly based on wire-bond technology verifies 50 Gb/s operation per channel, and the flip-chip version demonstrates the chip on-board assembly techniques for compact on-board transceivers

    Real-time 28 Gb/s NRZ over 80 km SSMF in C-band using analog electronic precompensation

    Get PDF
    We demonstrate real-time C-band transmission of direct detected 28Gb/s NRZ/OOK over 80km SSMF using a Dual-Drive MZM and custom-designed SiGe BiCMOS 5-tap analog FIR filters to compensate chromatic dispersion without digital signal processing
    corecore